Những kiến thức về đường tròn chúng ta đã được tiếp cận từ cấp 2, đặc biệt là năm lớp 9. Những bài toán hình học liên quan đến hình tròn rất nhiều

Chính vì thế mà những tính chất luôn được áp dụng, sử dụng để có thể giúp bạn hoàn thiện được bài toán đó. Chúng ta hãy cùng nhau xem những tính chất của đường tròn để ôn tập lại một chút nhé

Xem thêm bài viết:

Đường tròn là gì ? Định nghĩa đường tròn

Trong hình học phẳng, đường tròn (hoặc vòng tròn) là tập hợp của tất cả những điểm trên một mặt phẳng, cách đều một điểm cho trước bằng một khoảng cách nào đó.

Điểm cho trước gọi là tâm của đường tròn, còn khoảng cho trước gọi là bán kính của đường tròn. Đường tròn tâm O bán kính R ký hiệu là (O;R)

Đường tròn là một hình khép kín đơn giản chia mặt phẳng ra làm 2 phần: phần bên trong và phần bên ngoài. Trong khi “đường tròn” ranh giới của hình, “hình tròn” bao gồm cả ranh giới và phần bên trong.

Đường tròn cũng được định nghĩa là một hình elíp đặc biệt với hai tiêu điểm trùng nhau và tâm sai bằng 0. Đường tròn cũng là hình bao quanh nhiều diện tích nhất trên mỗi đơn vị chu vi bình phương.

Đường tròn nội tiếp tam giác

Định nghĩa

Trong hình học, đường tròn nội tiếp của một tam giác là đường tròn lớn nhất nằm trong tam giác. Nó tiếp xúc với cả ba cạnh của tam giác. Tâm của đường tròn nội tiếp là giao điểm của ba đường phân giác trong.

Cách xác định tâm đường tròn nội tiếp tam giác

Để xác định được không chỉ tâm đường tròn nội tiếp tam giác vuông mà còn tâm đường tròn nội tiếp tam giác đều nữa thì ta cần ghi nhớ lý thuyết.

Với tâm đường tròn nội tiếp của tam giác là giao điểm ba đường phân giác trong của tam giác, hoặc có thể là hai đường phân giác.

Đường tròn ngoại tiếp tam giác

Định nghĩa

Đường tròn ngoại tiếp tam giác là đường tròn đi qua cả 3 đỉnh của tam giác. Có thể nói cách khác là tam giác nội tiếp đường tròn.

Cách xác định đường tròn ngoại tiếp tam giác

Tâm đường tròn ngoại tiếp tam giác là giao điểm ba đường TRUNG TRỰC của ba cạnh tam giác (có thể là giao điểm hai đường trung trực)

Một số tính chất của các tâm

Tâm của bốn đường tròn này cách đều các cạnh của tam giác

Đường tròn nội tiếp và các đường tròn bàng tiếp đều tiếp xúc với đường tròn chín điểm. Tiếp điểm của đường tròn nội tiếp với đường tròn chín điểm gọi là điểm Feuerbach.

Các tâm của đường tròn nội tiếp và các đường tròn bàng tiếp lập thành một hệ thống trực giao có đường tròn chín điểm chính là đường tròn ngoại tiếp của tam giác.

Cho tam giác ABC, đường tròn nội tiếp tiếp xúc với ba cạnh tam giác tại ba điểm A’, B’, C’ khi đó ba đường thẳng AA’, BB’. CC’ đồng quy. Điểm này gọi là điểm Gergonne của tam giác

Cho tam giác ABC, đường tròn bàng tiếp ứng với cạnh BC, CA, AB lần lượt tiếp xúc với các cạnh này tại A’, B’, C’ khi đó ba đường thẳng AA’, BB’. CC’ đồng quy. Điểm này gọi là điểm Nagel của tam giác ABC.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *